Features Download
From: mark florisson <markflorisson88-Re5JQEeQqe8AvxtiuMwx3w <at> public.gmane.org>
Subject: Re: [Cython] Wacky idea: proper macros
Newsgroups: gmane.comp.python.cython.devel
Date: Monday 30th April 2012 15:19:59 UTC (over 6 years ago)
On 30 April 2012 14:49, Wes McKinney  wrote:
> On Sun, Apr 29, 2012 at 5:56 AM, mark florisson
>  wrote:
>> On 29 April 2012 08:42, Nathaniel Smith  wrote:
>>> On Sat, Apr 28, 2012 at 10:25 PM, mark florisson
>>>  wrote:
>>>> On 28 April 2012 22:04, Nathaniel Smith  wrote:
>>>>> Was chatting with Wes today about the usual problem many of us have
>>>>> encountered with needing to use some sort of templating system to
>>>>> generate code handling multiple types, operations, etc., and a wacky
>>>>> idea occurred to me. So I thought I'd through it out here.
>>>>> What if we added a simple macro facility to Cython, that worked at
>>>>> AST level? (I.e. I'm talking lisp-style macros, *not* C-style
>>>>> Basically some way to write arbitrary Python code into a .pyx file
>>>>> that gets executed at compile time and can transform the AST, plus
>>>>> some nice convenience APIs for simple transformations.
>>>>> E.g., if we steal the illegal token sequence @@ as our marker, we
>>>>> could have something like:
>>>>> @@ # alone on a line, starts a block of Python code
>>>>> from Cython.MacroUtil import replace_ctype
>>>>> def expand_types(placeholder, typelist):
>>>>>  def my_decorator(function_name, ast):
>>>>>    functions = {}
>>>>>    for typename in typelist:
>>>>>      new_name = "%s_%s" % (function_name, typename)
>>>>>      functions[name] = replace_ctype(ast, placeholder, typename)
>>>>>    return functions
>>>>>  return function_decorator
>>>>> @@ # this token sequence cannot occur in Python, so it's a safe
>>>>> # Compile-time function decorator
>>>>> # Results in two cdef functions named sum_double and sum_int
>>>>> @@expand_types("T", ["double", "int"])
>>>>> cdef T sum(np.ndarray[T] arr):
>>>>>  cdef T start = 0;
>>>>>  for i in range(arr.size):
>>>>>    start += arr[i]
>>>>>  return start
>>>>> I don't know if this is a good idea, but it seems like it'd be very
>>>>> easy to do on the Cython side, fairly clean, and be dramatically less
>>>>> horrible than all the ad-hoc templating stuff people do now.
>>>>> Presumably there'd be strict limits on how much backwards
>>>>> compatibility we'd be willing to guarantee for code that went poking
>>>>> around in the AST by hand, but a small handful of functions like my
>>>>> notional "replace_ctype" would go a long way, and wouldn't impose
>>>>> of a compatibility burden.
>>>>> -- Nathaniel
>>>>> _______________________________________________
>>>>> cython-devel mailing list
>>>>> [email protected]
>>>>> http://mail.python.org/mailman/listinfo/cython-devel
>>>> Have you looked at http://wiki.cython.org/enhancements/metaprogramming
>>>> In general I would like better meta-programming support, maybe even
>>>> allow defining new operators (although I'm not sure any of it is very
>>>> pythonic), but for templates I think fused types should be used, or
>>>> improved when they fall short. Maybe a plugin system could also help
>>>> people.
>>> I hadn't seen that, no -- thanks for the link.
>>> I have to say that the examples in that link, though, give me the
>>> impression of a cool solution looking for a problem. I've never wished
>>> I could symbolically differentiate Python expressions at compile time,
>>> or create a mutant Python+SQL hybrid language. Actually I guess I've
>>> only missed define-syntax once in maybe 10 years of hacking in
>>> Python-the-language: it's neat how if you do 'plot(x, log(y))' in R it
>>> will peek at the caller's syntax tree to automagically label the axes
>>> as "x" and "log(y)", and that can't be done in Python. But that's not
>>> exactly a convincing argument for a macro system.
>>> But generating optimized code is Cython's whole selling point, and
>>> people really are doing klugey tricks with string-based preprocessors
>>> just to generate multiple copies of loops in Cython and C.
>>> Also, fused types are great, but: (1) IIUC you can't actually do
>>> ndarray[fused_type] yet, which speaks to the feature's complexity, and
>> What? Yes you can do that.
> I haven't been able to get ndarray[fused_t] to work as we've discussed
> off-list. In your own words "Unfortunately, the automatic buffer
> dispatch didn't make it into 0.16, so you need to manually
> specialize". I'm a bit hamstrung by other users needing to be able to
> compile pandas using the latest released Cython.

Well, as I said, it does work, but you need to tell Cython which type
you meant. If you don't want to do that, you have to use this branch:
. This never made it in since we had no consensus on whether to allow
the compiler to bootstrap itself and because of possible immaturity of
the branch.

So what doesn't work is automatic dispatch for Python functions (def
functions and the object version of a cpdef function). They don't
automatically select the right specialization for buffer arguments.
Anything else should work, otherwise it's a bug.

Note also that figuring out which specialization to call dynamically
(i.e. not from Cython space at compile time, but from Python space at
runtime) has non-trivial overhead on top of just argument unpacking.
But you can't say "doesn't work" without giving a concrete example of
what doesn't work besides automatic dispatch, and how it fails.

>>> (2) to handle Wes's original example on his blog (duplicating a bunch
>>> of code between a "sum" path and a "product" path), you'd actually
>>> need something like "fused operators", which aren't even on the
>>> horizon. So it seems unlikely that fused types will grow to cover all
>>> these cases in the near future.
>> Although it doesn't handle contiguity or dimensional differences,
>> currently the efficient fused operator is a function pointer. Wouldn't
>> passing in a float64_t (*reducer)(float64_t, float64_t) work in this
>> case (in the face of multiple types, you can have fused parameters in
>> the function pointer as well)?
> I have to think that using function pointers everywhere is going to
> lose out to "inlined" C. Maybe gcc is smart enough to optimize
> observed code paths. In other words, you don't want
> for (i = 0; i < nlabels; i++) {
>    lab = labels[i];
>    result[lab] = reducer(sumx[i], data[i]);
> }
> when you can have
> for (i = 0; i < nlabels; i++) {
>    lab = labels[i];
>    result[lab] = sumx[i] + data[i];
> }
> I guess I should start writing some C code and actually measuring the
> performance gap as I might completely be off-base here; what you want
> eventually is to look at the array data graph and "rewrite" it to
> better leverage data parallelism (parallelize pieces that you can) and
> cache efficiency.
> The bigger problem with all this is that I want to avoid an
> accumulation of ad hoc solutions.

It's probably a good idea to check the overhead first, but I agree it
will likely be non-trivial. In that sense, I would like something
similar to julia like

def  func(runtime_arguments, etc, $compile_time_expr):
         use $compile_time_expr(sumx[i], data[i]) # or maybe
cython.ceval(compile_time_expr, {'op1': ..., 'op2': ...})

Maybe such functions should only be restricted to Cython space,
though. Fused types weren't designed to handle this in any way, they
are only there to support different types, not operators. If you would
have objects you could give them all different methods, so this is
really rather somewhat of a special case.

>> I agree with Dag that Julia has nice metaprogramming support, maybe
>> functions could take arbitrary compile time expressions as extra
>> arguments.
>>> Of course some experimentation would be needed to find the right
>>> syntax and convenience functions for this feature too, so maybe I'm
>>> just being over-optimistic and it would also turn out to be very
>>> complicated :-). But it seems like some simple AST search/replace
>>> functions would get you a long way.
>>> - N
>>> _______________________________________________
>>> cython-devel mailing list
>>> [email protected]
>>> http://mail.python.org/mailman/listinfo/cython-devel
>> _______________________________________________
>> cython-devel mailing list
>> [email protected]
>> http://mail.python.org/mailman/listinfo/cython-devel
> _______________________________________________
> cython-devel mailing list
> [email protected]
> http://mail.python.org/mailman/listinfo/cython-devel
cython-devel mailing list
[email protected]
CD: 4ms